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Effect of finite boundaries on the Stokes resistance 
of an arbitrary particle 

By HOWARD BRENNER 
Department of Chemical Engineering, New York University 

(Received 10 March 1961 and in revised form 5 July 1961) 

A general theory is put forward for the effect of wall proximity on the Stokes 
resistance of an arbitrary particle. The theory is developed completely for the 
case where the motion of the particle is parallel to a principal axis of resistance. 
In this case, the wall-effect correction can be calculated entirely from a knowledge 
of the force experienced by the particle in an unbounded fluid, providing (i) that 
the wall correction is already known for a spherical particle and (ii) that the 
particle is small in comparison to its distance from the boundary. Experimental 
data are cited which confirm the theory. The theory is extended to the wall 
effect on a particle rotating near a boundary. 

1. Introduction 
The surprisingly large effects of wall proximity on the Stokesian resistance 

of a settling particle are well known. To cite an illustration of Birkhoff (1950) 
‘ . . . a sphere falling slowly in a cylindrical tube of viscous liquid, having 100 times 
the cross-section of the sphere, encounters 20 % more resistance than if there were 
no walls’. Because of the practical importance of low Reynolds number drag 
phenomena in applications, numerous theoretical studies of the problem have 
been carried out. However, with few exceptions (Wakiya 1957, 1959; Chang 
1961), these investigations have been limited to spherical particles. Particles 
encountered in practice are rarely of this shape and it is therefore desirable to 
havc available the analogous wall-effect corrections for non-spherical particles. 

It often suffices to know the magnitude of this correction only for relatively 
small ratios of the characteristic particle-to-wall dimensions. As will be shown, 
this objective may be achieved without further effort whenever the analogous 
correction is already known for a spherical particle. 

Attention is confined to situations where sufficient symmetry prevails to cause 
the force on the settling body to act parallel to its direction of motion. The neces- 
sary and sufficient conditions for this are: (i) the particle must be moving parallel 
to one of its three principal axes of resistance (see $ 2  for the definition of this 
term), and (ii) the boundary must possess three mutually perpendicular symmetry 
planes orthogonal to the principal axes of the particle. These requirements are 
not as restrictive as might otherwise appear. Virtually all important applications 
fall within their purview. 

Where applicable, the central result of our analysis is remarkably simple. 
Let D denote the drag on the particle when moving in the bounded medium 
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with velocity U ,  and let D, denote the drag on the particle when moving through 
the unbounded fluid a t  the same velocity. The correction to the Stokes law 
resistance is then of the form 

1 
1 - k(Dm/6npU1) + O ( C / ~ ) ~ ’  

- D 
D,  

in which c and I are, respectively, the characteristic particle and wall dimensions, 
and p is the viscosity of the fluid. The dimensionless constant k is independent 
of the shape of the particle, depending solely on the nature of the bounding wall. 
The value of k can be obtained at  once by comparing equation (1.1) to the known 
solution of the problem for a spherical particle of radius c, in which case 

The existence of a general relation of the type (1.1) is sugge3ted by the recent 
work of Chang (1961) who showed that the drag on any body of revolution, falling 
parallel to its symmetry axis at  the centre of a circular cylinder of radius I ,  
is given by the expression 

Dw = 6npcU. 

When applied to a circular cylinder, equation (1.1) leads to results of greater 
accuracy than can be obtained from the above. Moreover, it  shows that the 
assumption of axisymmetric motion required in Chang’s derivation is unduly 
restrictive. 

It is possible to obtain results analogous to equation (1.1) which are free from 
all symmetry restrictions. These results are, however, of a decidedly less ele- 
mentary nature than those given here and are not further discussed. 

2. Particle settling in a stationary fluid 
Consider a particle, P ,  settling with instantaneous velocity U near some sur- 

face, S. It is assumed that the fluid motion is governed by the creeping motion 
and continuity equations 

v2v = p-IVp, v . v = 0. (2.1, 2.2) 

We confine ourselves to the case in which the particle and wall are solid surfaces, 
t o  which fluid adheres. (In a subsequent paragraph we shall remove this restric- 
tion on 8.) The boundary conditions to be satisfied are then 

v = U  o n P ,  v = O  on#. (2.3, 2.4) 

Since the net flow of fluid is zero we also require that? 

v + O  as r + m ,  (2.5) 

where r is measured from the ‘centre’ of the particle; that is, from the point of 
intersection of its three principal axes. 

not be satisfied. 
t In the event that S is a closed surface containing P in its interior, this condition need 
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As the equations of motion and boundary conditions are linear, we assume 
that the fluid velocity and pressure fields can be decomposed into a sum of fields 

v = $"+$2)+$3)+V(4)+ ..., (2.6) 
p = p(1) + p'2' + p(3' + p(4' + . . . , (2.7) 

each term of which, ($"),p(")), separately satisfies the equations of motion. The 
individual fields are to be determined successively by application of the following 
boundary conditions 

$1) = U o n P ,  (2.8) 

$2) = -v(1) on 8, (2.9) 
$3) = - $2, on P, (2.10) 

v(4) = - v ( ~ )  on 8, etc. (2.11) 

and, in addition, for w = 1, 2, 3, ..., 
vCn)-+0 as r - f o o .  (2.12) 

This techique of solution is known as the 'method of reflexions' (Brenner & 
Happel 1958), each separate field being termed a reflexion from either P or 8. 
As the odd numbered fields involve the satisfaction of a boundary condition on 
P, they introduce the characteristic particle dimension, c,  through terms of the 
form c/r raised to some positive power. Likewise, since r = O(1) on S, the even 
numbered fields, determined by the boundary conditions on S,  introduce its 
characteristic dimension, 1. Thus, each successive pair of reflexions, P -+ S -+ P, 
increases the overall accuracy of the solution by contributing terms in c11 whose 
dominant powers are of higher order than those arising from the preceding re- 
flexions. Equations (2.6) and (2.7) therefore amount to a series expansion in 
ascending powers of c/1 which converges to the solution of the original boundary- 
value problem posed. 

The drag, D, exerted on the particle by the fluid, may be obtained by summing 
the drag contributions of each of the individual fields. As shown in the Appendix, 
no contribution to the drag is made by the even numbered fields, reflected from 

D = D(1) + D(3) + D(5) + . . . . (2.13) S, and thus 

The initial field, $l), obviously corresponds to the settling of a particle in an 

D(1) =z D 0 0 3  (2.14) 

where, as before, D, refers to the force exerted by the fluid on the particle. A 
detailed knowledge of VCl) is required only in so far as it determines the next 
reflexion, v(~) ,  through the boundary condition on S, equation (2.9). As this 
boundary is situated at a relatively great distance from the particle, we may take 
the initial field to be that generated by a point force, D,, situated at the centre 

unbounded fluid. Associated with this motion is the drag 

of the particle (Lamb 1932) 
D, f 2  1 

$1) = 
6mpr 24mp V(D00. V);, 

(2.15) 

and (2.16) 
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It is helpful to bear in mind that D, is proportional to c. For a particle of 
finite dimensions these equations are correct to terms involving higher powers of 
clr than those already implicit in them. 

To the degree of approximation to which equation (2.15) is valid, the initial 
field is independent of the shape of the particle, being determined entirely by 
its resistance. This property obviously carries over to the next field, v@), defined 
by equation (2.9). The field $z) depends, of course, explicitly on the geometry of 
S. This second field makes no contribution to the drag and is important to our 
calculations only in so far as it determines the third field, v(3), in accordance with 
equation (2.10). 

Assuming to be known, we are now in a position to calculate the drag 
contribution DO. The calculation does not require an u priori knowledge of 
d3). We seek here an analogue of FaxBn’s sphere theorem (Oseen 1927, p. 113; 
PBres 1929), by means of which the force experienced by a ‘small’ particle, sus- 
pended in an arbitrary field of flow, can be computed. This can be accomplished 
with the aid of a reciprocal theorem due to Lorentz (Villat 1943) which, in our 
present application, takes the form 

where and IS@) denote the pressure tensors associated with the corresponding 
velocity fields and d S  is a directed element of surface area normal to the particle, 
P, over whose surface the integration extends.? 

At the surface of the particle we have that v@) = U, whereupon the right-side 

is the force on 

I n  the left-hand integral of equation (2.17), we have from equation (2.10) 
that d3) = -v@) at the surface of the particle. As the field v(2) is regular within 
the region of space presently occupied by the particle, it  can be expanded in a 
Taylor series about the centre of the particle. I f  only the leading term in the 
expansion is retained, this yields v@) = -6’) on P, in which the subscript 0 
implies that the field is to be evaluated at the centre of the particle. Retention 
of only the leading term in the series expansion a t  the surface of the particle 
depends, ultimately, for its justification on the fact that c/Z is small. By these 
means, the remaining integral in equation (2.17) becomes - 4;). D,, where 

of equation (2.17) becomes U. D@), in which D@) = dS . 
the particle due to v(~) .  JL 

Upon collecting results, we are led to the expression 

- v $ ~ ’ . D ~  = U.D(3), (2.18) 

t Equation (2.17) requires that the surface integrals vanish when extended over the 
surface of 821 indehitely large sphere containing the particle in its interior. This is easily 
seen to be the case here a8 we have for either field that v - O( l/r) and p - O( l/r2), a8 
r --f CO. Inasmuch as ll = -Ip+p(Vv+vV) - O(l/r2) and dS - O(rZ) ,  it follows at once 
that the integrals vanish appropriately. 
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correct to terms involving higher powers of c/Z than those already implicit in 
the relation. Now, in general, for any particle in the Stokes rdgime, we have the 
following linear relation (Landau & Lifshitz 1959) connecting the force experi- 
enced by the particle and its velocity, 

D,= -O.U.  ( 2 . 1 9 ~ )  

Here, is a symmetric resistance tensor.It is independent of the orientation 
of the particle with respect to its direction of motion through the fluid. It follows 
from the above relations that 

D(3) = 0.6”’. (2.19) 

This relation constitutes the generalization of FaxBn’s law. 
The properties of symmetric tensors are such that every arbitrary particle in 

creeping flow is endowed with a unique set of three mutually perpendicular 
axes such that, if its motion through the unbounded fluid be parallel to one of 
them, it will experience a force only in this direction. We shall refer to these 
as principal axes of resistance. When a body (e.g. an ellipsoid) possesses three 
mutually perpendicular symmetry planes, its principal axes of resistance lie 
normal to them. Attention is confined in the sequel to motion parallel to a prin- 
cipal axis. Thus, when the particle moves through the unbounded fluid with 
velocity U = kU, parallel to any of these axes, only one component of force 
results, D, = - kD,, in a direction opposite to that of the particle motion. From 
equation (2.15) we then find that 

where (5, y, z )  are measured from the centre of the particle, along its principal 
axes. 

To establish the direction of v(,), we note that, when the three symmetry planes 
of the boundary lie normal to the principal axes of the particle, the only non- 
zero component of 4:) will be parallel to the direction of motion of the particle. 
This follows from equation (2.10), and the above expression for Vcl), by observing 
that this is the only velocity component of the field d2) which will not be an odd 
function of at least one of the co-ordinates-x, y orz. Furthermore, any components 
which are odd functions vanish at  the centre of the particle (z = 0, y = 0, z = 0). 
Thus we write v$~) = - kwh2), where the scalarvi2)may be either positive or negative. 

It follows then from equation (2.19) that D(3) is parallel to the direction of 
motion of the particle. Thus, if we write D(n) = -mn), equation (2.19) adopts 
the form 

in which D, and U are essentially positive. The algebraic sign of D3) is then posi- 
tive or negative according as wi2) is positive or negative. For later reference, we 
also write D = -kD as it is now obvious that the total force on the particle is 
parallel to its direction of motion and oppositely directed. The scalar B is essen- 
tially positive. 

As D(3) is now known, the velocity field $3) can be computed at large distances 
from the particle via an equation of the form (2.15), in which v(3) replaces v(l), 

D(3) = D, @’/U, (2.20) 
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and D(3) replaces D,. This then furnishes the boundary conditions to determine 
v ( ~ )  in accordance with equation (2.11). By analogy to our previous calculations, 
it is at once apparent that D(5) = D , [ V ~ ~ ’ / U ] ~ ,  D(’) = Drn[vh2)/Ul3, etc. Upon 
summing the individual drags in accordance with equation (2.13)) the following 
expression is obtained for the total drag on the particle: 

D = D, + D,[v~’/ U ]  + D,[vi2)/ UIz + D,[vf)/7JI3 + . . . . 
This geometric series may be summed, whereupon 

1 
1 - (v&,)/ U )  ’ 

- 
D 

D, 
_ -  (2.21) 

From equation (2.15), the initial field, v(l), is proportional to D,. Since v@) 
is linearly connected to $1) through equation (2.9), it  follows that the same must 
be true of v@). In  addition, it is clear that v@) must be independent of the viscosity 
of the fluid. Since D, is directly proportional to the viscosity, this requires that 
v@) be proportional to D,/p. Finally, v(2) must obviously go to zero as IS recedes 
infinitely far from P, i.e. as 1 -+ co. By simple dimensional arguments, it  follows 
that we must have vL’) = k(Dm/6npl), (2.22) 

the dimensionless constant k depending solely on the nature of the boundary S. 
The boundary correction is then of the form 

(2.23) 

It remains yet to estimate the degree of approximation inherent in the above 
relation. Since D,  is proportional to pUc, the result is certainly correct to first 
powers of c / l ,  so that the error cannot exceed terms of O [ ( C / ~ ) ~ ]  in the denominator 
of (2.23). However, other arguments, too lengthy to give here, suggest that the 
error does not really exceed terms of O [ ( C / ~ ) ~ ] .  In  this event, we are led to equa- 
tion (1.1) as the correct form of the drag correction. 

It is worthwhile noting that equation (1.1) is correct whether or not X is a solid 
surface to which fluid adheres. Careful re-examination of the previous develop- 
ment shows that the final result holds for any linear boundary conditions on s, 
such as, for example, that for a ‘free’ surface, i.e. one on which the normal 
velocity and tangential stresses vanish. It goes without saying that the value of 
k depends upon the boundary conditions imposed on 8. 

Equation (1.1) can be extended to the case where the fluid itself is in a state 
of net flow as, for example, when fluid flows through a tube or between parallel 
walls within which a particle is confined. This is done by the addition of a field 
(V’O), p(O)), corresponding to flow through the conduit in the absence of the par- 
ticle. The sole modification required in equation (1.1) is the replacement of the 
denominator of the left-hand side by Dm, the infinite-medium drag based on the 
approach velocity to the particle, i.e. 

D‘, = D,[l - (V:”/U) (1 + O(C/Z)~}]. (2.24) 
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3. h-coefficients for typical boundaries 
The numerical values of k required to complete equation (1 .1)  can be obtained 

for any boundary where the wall effect is already known for a spherical particle. 
In  this case equation (1.1) becomes 

D 1 -- 
67rpcU - 1 - k(c/ l )  + O(c/1)3 

Numerous solutions involving spherical particles are available in the literature 
with which equation (3.1) can be compared to determine the appropriate Ic 
value. These have been employed to obtain the values cited below. 

Case I .  Particle moving along the axis of a circular cylinder; I = radius of 
cylinder (Oseen 1927, p. 198; Haberman & Sayre 1958): 

k = 2.1044. (3.2) 

Case II. Particle a t  the centre of a hollow sphere; 1 = radius of sphere (Cun- 
ningham 1910; Haberman & Sayre 1958) : 

k = 2. 4 (3.3) 

Case 111. Particle falling perpendicular to a single, infinite, plane surface; 
I = distance from centre of particle to plane: 

(a )  ‘solid’ plane (Oseen 1 9 2 7 , ~ .  142), k = 8; 
(b) ‘free’ surface,? k = 8. 
Case I V .  Particle moving parallel to a single, infinite, plane surface; 1 = dis- 

tance from centre of particle to plane: 

( a )  ‘solid’ plane (Oseen 1927), k = A; 
( b )  ‘free’ surface,$ k = -#. 
Case V .  Particle falling midway between two infinite, plane, parallel walls 

and moving parallel to them; I = distance from centre of particle to either wall 
(Oseen 1927, p. 204): k = 1.004. (3.8) 

Case V I .  Same as case I, except that centre of particle is situated at a frac- 
tional distance ,I3 = b/l from cylinder axis (Brenner & Happel 1958; Famularo 
1961): 

k = f (PL (3.9) 

wheref(P) is defined by Brenner & Happel in their equation (A2). For small 
values of p they give 

f(P) = 2.1044 - 0.6977P2 + O(P*). (3.10) 

t This value is derived from FaxBn’s solution (Oseen 1927, p. 161) for two equal spheres 
approaching one another, along their line of centres, with equal velocities, by observing that 
the plane midway between them is a free surface. 
1 This value is derived from Smoluchowski’s solution (Oseen 1927, p. 204) for two equal 

spheres falling with equal velocity perpendicular to their line of centres, by observing that 
the plane midway between them is a free surface. 
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It appears from the recent numerical work of Famularo (1961) that their tenta- 
tive plot of f(P), for larger values of j3, is somewhat in error. More accurate 
values, obtained by Famularo through direct evaluation of the integral of Brenner 
& Happel, are as follows: 

0.0 0.2 0.4 0.6 0.8 0.9 
2.079 2.044 2.165 3.213 f 0.3 5.60 f. 0.5 

P 
.f(P) 2.104 

As the particle approaches the cylinder wall, i.e. j3 + 1, the solution reduces to 
that for a particle settling next to a plane wall. Hence, 

(3.11) 

provided that the fractional distance of the particle from the cylinder wall, 
c/(Z- b) ,  is small. Thus, equations (6.8) and (9.5) of Brenner & Happel are in error. 
Equation (3.11) is consistent with Famularo’s (1961) numerical results. 

4. Experimental confirmation 
The predictions of the present theory can be compared to the experimental 

data of Squires & Squires (1937) on the low Reynolds number fall of circular 
disks along the axis of a circular cylinder. These authors measured the wall- 
effect correction for disks moving both broadside-on and edge-on in the range 
0.16 > c/l > 0.08. Their data for DID, correspond to our case I, with D, = 1 6 p U  
and (32/3)pcU, respectively (Lamb 1932). A comparison of their experimental 
data (their figure 2) with the present theory is made below, in figure 1. The solid 
lines correspond to the theoretical values. Agreement appears to be well within 
the accuracy of their data. 

The extensive low Reynolds number settling experiments (Re < 0.05) of 
Pettyjohn & Christiansen (1948) carried out with cubes, octahedra and tetra- 
hedra falling symmetrically along the axis of an 8 in. diameter circular cylinder 
provide a further test of the theory, as do the analogous experiments of Heiss 
& Coull (1952) on the fall of finite cylinders and rectangular parallelepipeds of 
various aspect ratios along each of their sets of principal axes in a 7.09cm 
circular cylinder. Theoretical values are not known for the resistances of these 
particles in infinite media. These authors give experimental plots of the dimen- 
sionlessparameter K = 18,uU/(dzgAp)vs d, (in cm) in the range 0 < 4/21 < 0.10. 
Here, d, is the diameter of a spherical particle of equal volume, g is the accelera- 
tion of gravity and Ap is the density difference between particle and fluid. 
According to equations (1.1) and (3.2), with D/D, = U,/U ( U ,  = settling velo- 
city of the particle in the unbounded fluid), K = K ,  - 2.1044dS/21. Thus, a plot 
of K os d, ought to yield a straight line with a negative slope of 1.0522/1. The 
data, of Pettyjohn & Christiansen (1948) (their figure 6) show a series of straight 
parallel lines for each of the four shapes investigated, their average slope being 
0.112 5 0.010 cm-l. This compares favourably with the theoretical slope of 
0.104cm-I. The data of Heiss & Coull (1952) (their figure 1) also appear as a 
series of straight parallel lines with an average slope of 0.292 f 0.005 cm-l, in 
excellent agreement with the theoretical value of 0.297 cm-l. 
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FIGIJRE 1. Wall effect for circular disks falling along the axis of a circular cylinder. 
0, Broadside fall; 0, edge-on fall. 

hlc 

FIGURE 2. Wall effect for two spheres falling parallel to their line-of-centres along the 
axis of a circular cylinder. 0, in. Lucite spheres; 8 ,s  in. Marbelette spheres. 
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Further experimental verification of the general theory is provided by the 
experimental data of Pfeffer (1958) on the fall of two closely spaced, equal sized 
spheres of the same density following one another along the axis of a circular 
cylinder a t  small Reynolds numbers. In  interpreting Pfeffer’s (1958) results, 
we adopt the point of view that two neighbouring particles may be looked upon 
as a single, dumbbell-like body which experiences a drag equal to the total drag 
on the two particles, and whose ‘centre’ lies along the line-of-centres joining the 
particles. This interpretation seems indisputable when the particles are actually 
in contact as well as when the centre-to-centre spacing, 2h, is small compared to 
the cylinder radius 1. On the other hand, it is obvious that the interpretahion will 
lead to errors when h/l is large. It follows from equation (1.1) that 

1 __ - --_______ 0 1 1  - 
( D m ) I I  1 - 2.104 (D,),I/Bn~UZ’ 

where DII and 
velocity U within the cylinder and in the infinite fluid, respectively. We write 

are the total drags on both spheres when they move with 

(DC0)II = 2Am(DaJ), = 12AmnpU, 

where A, is the Stokes law correction to the drag on one of the spheres due to 
the presence of the other, in an infinite medium. Numerical values of A, as a 
function of h/c are provided by Stimson & Jeffery (1926) and, for the special 
case where the spheres touch, by Faxen (Oseen 1927, p. 162). Stimson & Jeffery’s 
results have been accurately recalculated by the author to facilitate interpola- 
tion. They are given below in Table 1. 

hlc 1.0 1.1276 1.5430 2.3525 3.7621 6.1322 10.0676 
A, 0.645 0.6596 0.7024 0.7677 0.8361 0.8915 0.9307 

TABLE 1. Stokes law correction factor for two spheres in an infinite medium. 

If U,, and (U,),, denote the terminal settling velocities of the two spheres in 
the bounded and unbounded fluid, respectively, we have that 

(4.1) 

This relation cannot lead to correct results as h/1+ co, since the particles must 
then behave independently of one another. As c/Z is already assumed to be small, 
this condition is equivalent to h/c -+ co. Thus, when the particles behave inde- 
pendently, we have, from equation (3.2), 

It appears then, for a fixed value of c/l, starting from the point at which the spheres 
touch, that the wall effect should at first increase in magnitude with h/c, pass 
through a maximum and asymptotically approach equation (4.2) as a limit. 
As will appear shortly, this effect is observed experimentally (figure 2 ) .  This 
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unusual behaviour may explain the ‘kinks’ observed by Kynch (1959) in his 
attempt to analyse the two-sphere settling data of Hall (1956), without reference 
to wall effects. 

Pfeffer’s (1958) experiments were conducted with pairs of identical $and Q in. 
diameter spheres (nominal sizes) of materials of various density settling at the 
centre of a cylindrical column of 5& in. inside diameter. The experimental 
technique and results are reported by Happel & Pfeffer (1960), although only 
for the 2 in. spheres. Only the data for the 4 in. spheres will be examined here, as 
it is difficult with the smaller sizes to separate accurately the wall effect from the 
experimental inaccuracies. 

The spheres used by Pfeffer were of Nylon, Lucite and Marbelette, their 
respective diameters being 0*499,0.490 and 0.488 in. Only the data for the latter 
two sizes, which we characterize by the single diameter of 0*489in., will be ex- 
amined in detail. This makes c/ l  = 0.0915. Experiments were carried out in the 
range from h/c = 1.0 to about 6. Single sphere Reynolds numbers varied from 
0.06 to 0.19. The settling velocities, UI1, were measured directly. Values of 
required for testing the data, were obtained from the relation (U,),, = (U,),/A, 
by calculating the terminal settling velocity (U,)I of a single sphere in the 
unbounded fluid from the known properties of the spheres and liquid. 

A direct comparison of the experimental and theoretical wall-effect ratios, 
(U,)II/UII, as functions of h/c, is furnished in figure 2. The theoretical values, 
derived from equation (4.1) with c/l = 0.0915, are shown by the solid curve. The 
dashed curve represents a smooth curve drawn through the experimental-data 
points. Also shown on the sketch is the theoretical asymptote, ( U m ) I I / U I I  = 1.239 
for the situation where h/c -+ 00. Theoretical and experimental vaIues are con- 
cordant up to about h/c = 2.0, beyond which the divergence between them 
appears significant. Particularly impressive is the agreement of the three experi- 
mental values of 1.318, 1-320 and 1.321 with the theoretical value of 1.330 for 
the case where the spheres touch. 

5. Rotating particle in a bounded fluid 
Equation (1.1) has an analogue for the couple on a particle rotating near a 

boundary. The couple L which must be applied to the particle to maintain it in 
uniform rotation with angular velocity 8 is different from the corresponding 
couple, L,, in the absence of boundaries. The calculation of L/L,  can be made 
along lines similar to those laid out in 5 2. 

In  place of equation (2.3) and (2.8) it  is now required that 

v = v(I) = S2 x r on P. (5.1) 

The couple L is given by a sum of terms similar to equation (2.13), in which L(@ 
replaces D(n) (see Appendix), and in which L(I) = L,. The initial field, correspond- 
ing to the motion induced by a point couple situated at  the centre of the particle, 
is (Love 1927, p. 187) 

~ ( 1 )  = -La x r/87rpr3, p(1) = 0. ( 5 . 2 )  
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When an arbitrary particle rotates in an unbounded fluid, it can be shown 
that there is a linear relation of the form 

L,= -Y.Q (5.3) 

where Y is a symmetric tensor. Every arbitrary particle therefore possesses a 
set of three mutually perpendicular principal axes of rotation. 

As in 5 2, we next focus our attention on the calculation of L(3). In  particular, 
we seek the generalization of a second law due to Faxen (Oseen 1927, p. 113) 
which, for a spherical particle, enables one to compute the couple acting upon it 
when suspended in an arbitrary field of flow. Towards this end, we again fall back 
on the reciprocal theorem, equation (2.17), which remains valid for the applica- 
tions at hand. Now, on the surface of the particle, v(Q is given by equation (5.1). 
The right-side of equation (2.17) is therefore equal to S2. L@), where 

To evaluate the left-hand integral of equation (2.17) we note, from equation 
(2.10), that d3) = -d2) on P. As the field v(S is well behaved everywhere, we 
expand it in a Taylor series about the centre of the particle and retain only the 
leading terms, whence v@) = vh’) + wh2) x r + Ah’) . r, (5.4) 

where miz) = +(V x d2))o and Ah,) = 4(W2)  + V(~)V),. This amounts to an expansion 
of the field into translational, rotational and dilatational contributions, 
respectively . 

The left-side of equation (2.17) therefore becomes - $). D(l) - wh2). L, - J ,  
where 

It is obvious that the purely rotational field, v(i), cannot produce any resultant 
force on the particle and, hence, D(l) = 0. It remains only to evaluate the surface 
integral J .  At the risk of some loss in generality, we confine ourselves to the case 
in which Ahz) = 0, which makes J = 0. By considering the oddness and evenness 
of the components of dz), it can be shown that sufficient conditions for the 
vanishing of Af) are: (i) the particle revolves about a principal axis of rotation, 
and (ii) the boundary, S, possesses three mutually perpendicular symmetry 
planes which are orthogonal to the principal axes of the particle. When these 
conditions are met, the directions of L and L, are parallel to a. 

Upon collecting results one obtains 

51 . L(3) = - up. L,, (5 .6)  
L(3) = y . &) 

or, employing equation (5.3), 
0 -  (5.7) 

This relation may be regarded as a generalization of Faxen’s second law, to 
which it reduces for a spherical particle. I n  contrast to equation (2.19), when 
applied to an arbitrary particle, equation (5.7) is not generally correct unless the 
stipulated symmetry conditions are met. 
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Since LC3) = (L,/Q) wh2), we eventually obtain, 8s before, 
1 - L _ -  

L, 1 - (W&”/Q) * 

Thus, by arguments similar to those of 5 2,f 

1 
(5.9) 

L 
L ,  1 - K(L,/87rpQ13) +O(c/Z)5’ 

where K is a dimensionless constant of O( 1) which is independent of the shape of 
the particle. 

It can be seen from this relation that the magnitude of the wall effect for a 
rotating particle depends on terms of O ( C / ~ ) ~ ,  in contrast to the wall effect for a 
translating particle, which depends on terms of O(c/l). Thus, the wall effect is 
very much smaller for rotation than for translation. Moreover, the rotational 
result applies to very much larger values of c/l  than does the corresponding trans- 
lational result. 

In  the case of a spherical particle, L, = 877pc3!2, and equation (5.9) becomes 

- - -  

1 - __ - L 
Lm 1 -K(c/1)3 + ... . 

The K value for any particular surface S can be obtained by comparing the 
above to the known solution for a spherical particle. Only a very few solutions of 
the equations of motion are known for spheres rotating near boundaries. These 
are considered below. 

Case I .  Particle rotating at the centre of a hollow sphere; 1 = radius of sphere 

(Jeffery 19 15) : K = 1. (5.10) 

CaseII .  Particle rotating about an axis which is perpendicular to a single, 
infinite plane surface; Z = distance from centre of particle to plane (Jeffery 
1915): 

( a )  ‘solid’ plane, K = Q; (5.11) 
(b) ‘free’ surface,$ K = -+. (5.12) 

Case III. Particle rotating about the longitudinal axis of a circular cylinder; 

1 = radius of cylinder : K = 0.7968. (5.13) 

This result has not been given before. 

Appendix 
We prove here that a velocity field which is free from singularities in the in- 

terior of the volume, &, occupied by a particle can produce neither a resultant 
force nor a couple on the particle. The force on the particle is 

”/. 
D = JJ ~S.II, 

P 

t The error estimate, O(C/Z)~, applies only to non-spherical particles. Spherical particles 
lead to much smaller errors. 

$ This is obtained from Jeffery’s solution for the rotation, about their line-of-centres, 
of two equal spheres, external to each other in an infinite fluid, when they rotate at the 
same angular velocity in the same direction. The plane of symmetry midway between them 
is then B free surface. 
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which, since the field is regular in Q, can be converted by Gauss’s divergence 
theorem into the volume integral 

* a *  

D = -JJjQV.IIdQ. 

This, in turn, vanishes identically since V . II = 0 in creeping flow. 
The analogous proof for the couple on the particle is 

L=JJprx( I I .dS)  = -  

= /JJQV.(IIxr)dQ = J/JQ (V . I I )  x rd& = 0. Q.E.D. 
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